An array in C/C++ or be it in any programming language is a collection of

similar data items stored at contiguous memory locations and elements
that can be accessed randomly using indices of an array. They can be
used to store the collection of primitive data types such as int, float,
double, char, etc of any particular type. To add to it, an array in C/C++ can
store derived data types such as structures, pointers, etc. Given below is

the picture representation of an array.
an array is a container that can hold a fixed number of elements and
these elements should be of the same type. Most of the data structures
make use of arrays to implement their algorithms.

40 55 B3

17 22 68

89

97 B9

| O 1 2

7 8 | <-ArrayIndices

Array Length=9
First Index=0
Last Index=8

A linked list is a linear data structure consisting of nodes where each node
contains a reference to the next node. To create a link list we need

a pointer that points to the first node of the list.

Approach: To create an array of linked lists below are the main

requirements:

« An array of pointers.

« For keeping the track of the above-created array of pointers then
another pointer is needed that points to the first pointer of the array.
This pointer is called pointer to pointer.

Below is the pictorial representation of the array of linked lists:

_;| data]— ¥ data | — data {—{ data |—>

* %

Pointer to Pointer

Array of Pointer to link list

* 4,| data Hdata H data H data —l—l‘

* —p| data~|—+data %—m—»
* 44 data"—fdata 1—4’ data H data ‘|—’

Array of link list

Below is the C++ program to implement the array of linked lists:

C++

https://www.geeksforgeeks.org/introduction-to-arrays/
https://www.geeksforgeeks.org/c-plus-plus/
https://www.geeksforgeeks.org/top-10-programming-languages-of-the-world-2019-to-begin-with/
https://www.geeksforgeeks.org/c-data-types/
https://www.geeksforgeeks.org/derived-data-types-in-c/
https://www.geeksforgeeks.org/data-structures/linked-list/
https://www.geeksforgeeks.org/pointers-in-c-and-c-set-1-introduction-arithmetic-and-array/
https://www.geeksforgeeks.org/creating-array-of-pointers-in-cpp/
https://www.geeksforgeeks.org/double-pointer-pointer-pointer-c/
https://media.geeksforgeeks.org/wp-content/uploads/20210821212740/Arrayoflinklist.PNG

// C++ program to illustrate the array

// of Linked Lists

#include <iostream>

using namespace std;

// Structure of Linked Lists

struct info {

int data;

info* next;

// Driver Code

int main ()

int size = 10;

// Pointer To Pointer Array

info** head;

// Array of pointers to info struct

// of size

head = new info*[size];

// Initialize pointer array to NULL

for (inti = 0; 1 < size; ++1i) {

* (head + i) = NULL;

// Traverse the pointer array

for (inti1i = 0; 1 < size; ++1) {

// To track last node of the list

info* prev = NULL;

// Randomly taking 4 nodes in each

// linked list

int s = 4;

while (s—--) {

// Create a new node

info* n = new info;

// Input the random data

n->data = 1 * s;

n->next = NULL;

// If the node is first

if (* (head + i) == NULL) {
* (head + i) = n;

}

else {
prev->next = n;

}

prev = n;

// Print the array of linked list

for (int i = 0; 1 < size; ++1i) {

info* temp = *(head + 1i);

// Linked list number

cout << 1 << "—-->\t";

// Print the Linked List
while (temp != NULL) {
cout << temp->data << " ";

temp = temp->next;

cout << '\n';

return 0;

Output:
0--> 0000

1--> 32160
A== 6420
S==8 96 360
4--> 12 8 4 ©
S== 15 10 5 @
6--> 18 12 6 ©
l/==2 21 14 7 ©
8--> 24 16 8 ©
Sl==5 27 18 9 ©

Time Complexity: O(size*4)
Here size is the number of rows of lists

Auxiliary Space: O(size*4)
The extra space is used to store the elements of the lists.

Implement a stack using queues. The stack should support the following
operations:

1. Push(x): Push an element onto the stack.

2. Pop(): Pop the element from the top of the stack and return it.

Push
Last in, first out
Stack ’
Insertion and Deletion
happen on same end UL L
-] -
op Pop
Queue
Insertion and Deletion
happen on different ends
-
R L8
Enqueue = Front Dequeue

First in . first out

A Stack can be implemented using two queues. Let Stack to be implemented be ‘s’
and queues used to implement are ‘q1’ and ‘q2’.

Stack ‘s’ can be implemented in two ways:

By making push() operation costly — Push in O(n) and Pop() in O(1)
The idea is to keep newly entered element at the front of ‘g1’ so that pop operation
dequeues from ‘q1°. ‘g2’ is used to move every new element in front of ‘q1°.

Follow the below steps to implement the push(s, x) operation:
« Enqueue x to g2.

« One by one dequeue everything from g1 and enqueue to g2.
« Swap the queues of q1 and g2.

Follow the below steps to implement the pop(s) operation:

« Dequeue an item from g1 and return it.

https://www.geeksforgeeks.org/problems/stack-using-two-queues/1
https://www.geeksforgeeks.org/problems/stack-using-two-queues/1
https://www.geeksforgeeks.org/problems/stack-using-two-queues/1

C++JavaPythonC#JavaScript

/* Program to implement a stack using
two queue */

#include <bits/stdc++.h>

using namespace std;
class Stack {

// Two inbuilt queues
queue<int> g1, q2;

public:
void push(int x)
{
// Push x first in empty q2
g2.push(x);
// Push all the remaining
// elements in g1 to q2.
while (!ql.empty()) {
g2.push(gl.front());
ql.pop();
}
// swap the names of two queues
swap(ql, q2);
}
void pop()
{
// i1f no elements are there in g1
if (ql.empty())
return;
ql.pop();
}
int top()
{
if (ql.empty())
return -1;
return gl.front();
}

int size() { return gl.size(); }

};

// Driver code

int main()

{
Stack s;
s.push(1);
s.push(2);

s.push(3);

cout << "current size: " << s.size() << endl;
cout << s.top() << endl;

s.pop();

cout << s.top() << endl;

s.pop();
cout << s.top() << endl;

cout << "current size: " << s.size() << endl;
return 0;

}

Output

current size: 3

3

2

1

current size: 1

Time Complexity:

« Push operation: O(n), As all the elements need to be popped out from the
Queue (ql) and push them back to Queue (g2).

« Pop operation: O(1), As we need to remove the front element from the Queue.

Auxiliary Space: O(n), As we use two queues for the implementation of a Stack.

By making pop() operation costly — Push in O(1) and Pop() in O(n)

The new element is always enqueued to gl1. In pop() operation, if g2 is empty then

all the elements except the last, are moved to g2. Finally, the last element is

dequeued from g1 and returned.

Follow the below steps to implement the push(s, x) operation:

« Enqueue x to gl (assuming the size of g1 is unlimited).

Follow the below steps to implement the pop(s) operation:

« One by one dequeue everything except the last element from g1 and enqueue to
g2.

o Dequeue the last item of g1, the dequeued item is the result, store it.

« Swap the names of g1 and g2

« Return the item stored in step 2.

C++JavaPythonC#JavaScript

// Program to implement a stack

// using two queue

#include <bits/stdc++.h>
using namespace std;

class Stack {
queue<int> g1, q2;

public:
void pop()
{

if (ql.empty())
return;

// Leave one element in ql1 and

// push others in g2.

while (qgl.size() != 1) {
g2.push(gl.front());
ql.pop();

}

// Pop the only Lleft element
// from ql
ql.pop();

// swap the names of two queues
swap(ql, g2);
}

void push(int x) { ql.push(x); }

int top()

{
if (ql.empty())
return -1;

while (qgl.size() != 1) {
g2.push(gl.front());
ql.pop();

}

// Llast pushed element
int temp = ql.front();

// to empty the auxiliary queue after
// last operation

ql.pop();

// push last element to g2
g2.push(temp);

// swap the two queues names
queue<int> q = q1;

gl = q2;

q2 = q;

return temp;

}

int size() { return gl.size(); }

};

// Driver code
int main()

{
Stack s;
s.push(1);
s.push(2);
s.push(3);
cout << "current size: " << s.size() << endl;
cout << s.top() << endl;
s.pop();
cout << s.top() << endl;
s.pop();
cout << s.top() << endl;
cout << "current size: " << s.size() << endl;
return 0;
}
Output
current size: 3
3
2
1

current size: 1

Time Complexity:

« Push operation: O(1), As, on each push operation the new element is added at
the end of the Queue.

« Pop operation: O(n), As, on each pop operation, all the elements are popped
out from the Queue (ql) except the last element and pushed into the Queue
(92).

Auxiliary Space: O(n) since 2 queues are used.

Using single queue and Recursion Stack

Using only one queue and make the queue act as a Stack in modified way of the

above discussed approach.

Follow the below steps to implement the idea:

« The idea behind this approach is to make one queue and push the first element
init.

« After the first element, we push the next element and then push the first element
again and finally pop the first element.

« So, according to the FIFO rule of the queue, the second element that was
inserted will be at the front and then the first element as it was pushed again
later and its first copy was popped out.

« S0, this acts as a Stack and we do this at every step i.e. from the initial element
to the second last element, and the last element will be the one that we are
inserting and since we will be pushing the initial elements after pushing the last
element, our last element becomes the first element.

C++JavaPythonC#JavaScript
#include <bits/stdc++.h>
using namespace std;

// Stack Class that acts as a queue
class Stack {

queue<int> q;

public:
void push(int data)
{
int s = q.size();
// Push the current element
g.push(data);
// Pop all the previous elements and put them after
// current element
for (int i = 90; i < s; i++) {
// Add the front element again
g.push(q.front());
// Delete front element
q.pop();
}
}
void pop()
{
if (q.empty())
cout << "No elements\n";
else
q.pop();
}

int top() { return (q.empty()) ? -1 : q.front(); }
int size() { return q.size(); }
bool empty() { return (q.empty()); }

}s
int main()

Stack st;

st.push(1);
st.push(2);
st.push(3);

cout << "current size: " << st.size() << "\n";
cout << st.top() << "\n";

st.pop();
cout << st.top() << "\n";
st.pop();
cout << st.top() << "\n";
cout << "current size: " << st.size();
return 0;

¥

Output

current size: 3

3

2

1

current size: 1

Time Complexity:

o Push operation: O(n)

« Pop operation: O(1)

Auxiliary Space: O(n) since 1 queue is used.

Write a program to convert an Infix expression to Postfix form.

Infix expression: The expression of the form “a operator b” (a + b) i.e.,
when an operator is in-between every pair of operands.

Postfix expression: The expression of the form “a b operator” (ab+) i.e.,
When every pair of operands is followed by an operator.

Examples:

Input: s = “A*(B+C)/D”

Output: ABC+*D/

Input: s = “a+b*(c”d-e)(f+g*h)-i”

Output: abcd”e-fgh*+"*+i-

https://www.geeksforgeeks.org/problems/infix-to-postfix-1587115620/1
https://www.geeksforgeeks.org/problems/infix-to-postfix-1587115620/1
https://www.geeksforgeeks.org/problems/infix-to-postfix-1587115620/1

Why postfix representation of the expression?

The compiler scans the expression either from left to right or from right to

left.

Consider the expression: a+b *c + d

« The compiler first scans the expression to evaluate the expression b *
c, then again scans the expression to add a to it.

« The result is then added to d after another scan.

The repeated scanning makes it very inefficient. Infix expressions are

easily readable and solvable by humans whereas the computer cannot

differentiate the operators and parenthesis easily so, it is better to convert

the expression to postfix (or prefix) form before evaluation.

The corresponding expression in postfix form is abc*+d+. The postfix

expressions can be evaluated easily using a stack.

Conversion of an Infix expression to Postfix expression

To convert infix expression to postfix expression, use the stack data

structure. Scan the infix expression from left to right. Whenever we get

an operand, add it to the postfix expression and if we get an operator or

parenthesis add it to the stack by maintaining their precedence.

Below are the steps to implement the above idea:
1. Scan the infix expression from left to right.
2. If the scanned character is an operand, put it in the postfix expression.
3. Otherwise, do the following
. If the precedence of the current scanned operator is higher than the
precedence of the operator on top of the stack, or if the stack is
empty, or if the stack contains a ‘(‘, then push the current operator
onto the stack.
« Else, pop all operators from the stack that have precedence higher
than or equal to that of the current operator. After that push the
current operator onto the stack.

4. If the scanned character is a ‘(‘, push it to the stack.
5. If the scanned character is a ‘)’, pop the stack and output it until a
‘(‘is encountered, and discard both the parenthesis.
6. Repeat steps 2-5 until the infix expression is scanned.
7. Once the scanning is over, Pop the stack and add the operators in the

postfix expression until it is not empty.
8. Finally, print the postfix expression.
lllustration:

3/10

https://www.geeksforgeeks.org/stack-data-structure/
https://www.geeksforgeeks.org/stack-data-structure/

#include <bits/stdc++.h>
using namespace std;

int prec(char c) {
if (c == ')
return
else if (c
return
else if (c
return
else
return -1;

w

b

we ||
~
(g}
|
|
*
~

= oinN
1l
a5
(g}
1l
Il
1
~

}

string infixToPostfix(string s) {
stack<char> st;
string res;

for (int i
char c

9; i < s.length(); i++) {
s[i];

// If the scanned character 1is
// an operand, add it to the output string.
if ((c >= 'a' & c <= 'z2") || (c >= 'A' && c <= 'Z") || (c >= '@' && ¢
<= '9"))
res += c;

// If the scanned character is an
// (¢, push it to the stack.
else if (c == '(")

st.push('(");

// If the scanned character is an €)’,
// pop and add to the output string from the stack
// until an “(¢ is encountered.

else if (c == ")") {
while (st.top() !'= "(") {
res += st.top();
st.pop();
}
st.pop();
}

// If an operator is scanned
else {
while (!st.empty() && prec(c) <= prec(st.top())) {
res += st.top();
st.pop();

}
st.push(c);

// Pop all the remaining elements from the stack
while (!st.empty()) {
res += st.top();

st.pop();
}

return res;

int main() {
string exp = "a+b*(crd-e) N (f+g*h)-i";
cout << infixToPostfix(exp);
return 0;

}

Output
abcd™e-fgh*+ *+1i-

Time Complexity: O(n), where n is the size of the infix expression
Auxiliary Space: O(n), where n is the size of the infix expression

nfix : An expression is called the Infix expression if the operator appears
in between the operands in the expression. Simply of the form (operandl
operator operand?2).

Example : (A+B) * (C-D)

Prefix : An expression is called the prefix expression if the operator
appears in the expression before the operands. Simply of the form
(operator operandl operand?2).

Example : *+AB-CD (Infix : (A+B) * (C-D))

Given a Prefix expression, convert it into a Infix expression.

Computers usually does the computation in either prefix or postfix (usually
postfix). But for humans, its easier to understand an Infix expression
rather than a prefix. Hence conversion is need for human understanding.
Examples:

Input : Prefix : *+AB-CD

Output : Infix : ((A+B)*(C-D))

Input : Prefix : *-A/BC-/AKL
Output : Infix : ((A-(B/C))*((A/K)-L))

https://www.geeksforgeeks.org/problems/prefix-to-infix-conversion/1

Algorithm for Prefix to Infix:

« Read the Prefix expression in reverse order (from right to left)

. If the symbol is an operand, then push it onto the Stack

. If the symbol is an operator, then pop two operands from the Stack
Create a string by concatenating the two operands and the operator
between them.
string = (operandl + operator + operand?2)
And push the resultant string back to Stack

« Repeat the above steps until the end of Prefix expression.

« At the end stack will have only 1 string i.e resultant string

Postfix: An expression is called the postfix expression if the operator
appears in the expression after the operands. Simply of the form
(operandl operand2 operator).

Example : AB+CD-* (Infix : (A+B) * (C-D))

Prefix : An expression is called the prefix expression if the operator
appears in the expression before the operands. Simply of the form
(operator operandl operand?2).

Example : *+AB-CD (Infix : (A+B) * (C-D))

Given a Postfix expression, convert it into a Prefix expression.
Conversion of Postfix expression directly to Prefix without going through
the process of converting them first to Infix and then to Prefix is much
better in terms of computation and better understanding the expression
(Computers evaluate using Postfix expression).

https://www.geeksforgeeks.org/problems/prefix-to-infix-conversion/1
https://www.geeksforgeeks.org/problems/prefix-to-infix-conversion/1
https://www.geeksforgeeks.org/problems/prefix-to-infix-conversion/1

Examples:

Input : Postfix : AB+CD-*

Output : Prefix : *+AB-CD

Explanation : Postfix to Infix : (A+B) * (C-D)
Infix to Prefix : *+AB-CD

Input : Postfix : ABC/-AK/L-*

Output : Prefix : *-A/BC-/AKL

Explanation : Postfix to Infix : ((A-(B/C))*((A/K)-L))
Infix to Prefix : *-A/BC-/AKL

Algorithm for Postfix to Prefix:

« Read the Postfix expression from left to right

« If the symbol is an operand, then push it onto the Stack

. If the symbol is an operator, then pop two operands from the Stack
Create a string by concatenating the two operands and the operator
before them.
string = operator + operand2 + operandl
And push the resultant string back to Stack

« Repeat the above steps until end of Postfix expression.

Given an infix expression consisting of operators (+, -, *, /,) and
operands (lowercase characters), the task is to convert it to a prefix
expression.

Infix Expression: The expression of type a ‘operator’ b (a+b, where + is
an operator) i.e., when the operator is between two operands.

Prefix Expression: The expression of type ‘operator’ a b (+ab where +
Is an operator) i.e., when the operator is placed before the operands.

Examples:

Input: a*b+c/d
Output: +*ab/cd
Input: (a-b/c)*(a/k-1)
Output: *-a/bc-/akl

Approach:
The idea is to first reverse the given infix expression while swapping ‘(“
with ‘)" and vice versa, then convert this modified expression to postfix

https://www.geeksforgeeks.org/problems/postfix-to-prefix-conversion/1
https://www.geeksforgeeks.org/problems/postfix-to-prefix-conversion/1
https://www.geeksforgeeks.org/problems/postfix-to-prefix-conversion/1

notation using a stack-based approach that follows operator precedence
and associativity rules, and finally reverse the obtained postfix expression
to get the prefix notation.

Step by step approach:
1. Reverse the infix expression. Note while reversing each ‘(* will become

‘) and each ‘) becomes ‘('.

2. Convert the reversed infix expression to postfix expression.

« Initialize an empty stack to store operators and an empty string for
the postfix expression.

« Scan the infix expression from left to right.

. If the character is an operand, append it to the postfix expression.

. If the character is ‘(‘, push it onto the stack.

« If the character is ‘)’, pop from the stack and append to the postfix
expression until ‘(“ is found, then pop ‘(" without appending.

. If the character is an operator, pop and append operators from
the stack until the stack is empty or a lower precedence operator is
found, then push the current operator onto the stack.

« After scanning the expression, pop and append all remaining
operators from the stack to the postfix expression.

3. Reverse the postfix expression and return it.
lllustration:
See the below image for a clear idea:

Convert Infix to Prefix Notation
—»{ A+(B*C) ‘ +A(*BC) }—

Infix Notation Reverse Postfix Notation
(required Prefix Notation)

—* Output

Input

1. Reverse given expression 3. Reverse the Postfix Notation

A J

2. Convert to
C*B)+A }7 4% CBYA
(cer Postfix Notation (CEvAr ‘

Reverse Infix Notation Postfix Notation

Convert infix expression to prefix expression

