A deadlock is a situation where a set of processes is blocked because
each process is holding a resource and waiting for another resource
acquired by some other process. In this article, we will discuss deadlock,
its necessary conditions, etc. in detail.

« Deadlock is a situation in computing where two or more processes are
unable to proceed because each is waiting for the other to release
resources.

« Key concepts include mutual exclusion, resource holding, circular wait,
and no preemption.

Consider an example when two trains are coming toward each other on

the same track and there is only one track, none of the trains can move

once they are in front of each other. This is a practical example of
deadlock.

How Does Deadlock occur in the Operating

System?

Before going into detail about how deadlock occurs in the Operating

System, let’s first discuss how the Operating System uses the resources

present. A process in an operating system uses resources in the following

way.

° Requests aresource

e Use theresource
o Releases the resource

A situation occurs in operating systems when there are two or more
processes that hold some resources and wait for resources held by
other(s). For example, in the below diagram, Process 1 is holding
Resource 1 and waiting for resource 2 which is acquired by process 2,
and process 2 is waiting for resource 1.

Examples of Deadlock
There are several examples of deadlock. Some of them are mentioned
below.

1. The system has 2 tape drives. PO and P1 each hold one tape drive and
each needs another one.

2. Semaphores A and B, initialized to 1, PO, and P1 are in deadlock as
follows:

« PO executes wait(A) and preempts.

« P1 executes wait(B).

« Now PO and P1 enter in deadlock.

PO Pl
wait(A); wait(B)

wait(B); wait(A)

3. Assume the space is available for allocation of 200K bytes, and the
following sequence of events occurs.

PO P1

Request Request
80KB; 70KB;

Request 60KB; Request 80KB;

Deadlock occurs if both processes progress to their second request.

Necessary Conditions for Deadlock in OS

Deadlock can arise if the following four conditions hold simultaneously

(Necessary Conditions)

« Mutual Exclusion: Only one process can use a resource at any given
time i.e. the resources are non-sharable.

« Hold and Wait: A process is holding at least one resource at a time and
Is waiting to acquire other resources held by some other process.

« No Preemption: A resource cannot be taken from a process unless the
process releases the resource.

« Circular Wait: set of processes are waiting for each other in a circular
fashion. For example, lets say there are a set of processes {POPO
,P1P1,P2P2,P3P3} such that POPO depends on P1P1, P1P1 depends
on P2P2, P2P2 depends on P3P3 and P3P3 depends on POPO. This
creates a circular relation between all these processes and they have
to wait forever to be executed.

Methods of Handling Deadlocks in Operating
System

There are three ways to handle deadlock:
1. Deadlock Prevention or Avoidance

2. Deadlock Detection and Recovery
3. Deadlock Ignorance

Deadlock Prevention or Avoidance

Deadlock Prevention and Avoidance is the one of the methods for

handling deadlock. First, we will discuss Deadlock Prevention, then

Deadlock Avoidance.

Deadlock Prevention

In deadlock prevention the aim is to not let full-fill one of the required

condition of the deadlock. This can be done by this method:

(i) Mutual Exclusion
We only use the Lock for the non-share-able resources and if the

resource is share- able (like read only file) then we not use the locks here.

That ensure that in case of share -able resource , multiple process can

access it at same time. Problem- Here the problem is that we can only do

it in case of share-able resources but in case of no-share-able resources
like printer , we have to use Mutual exclusion.

(ii) Hold and Wait
To ensure that Hold and wait never occurs in the system, we must

guarantee that whenever process request for resource , it does not hold

any other resources.

« we can provide the all resources to the process that is required for it's
execution before starting it's execution . problem — for example if there
are three resource that is required by a process and we have given all
that resource before starting execution of process then there might be
a situation that initially we required only two resource and after one
hour we want third resources and this will cause starvation for the
another process that wants this resources and in that waiting time that
resource can allocated to other process and complete their execution.

« We can ensure that when a process request for any resources that
time the process does not hold any other resources. Ex- Let there are
three resources DVD, File and Printer . First the process request for
DVD and File for the copying data into the file and let suppose it is
going to take 1 hour and after it the process free all resources then
again request for File and Printer to print that file.

(iii) No Preemption
If a process is holding some resource and requestion other resources

that are acquired and these resource are not available immediately then

the resources that current process is holding are preempted. After some
time process again request for the old resources and other required
resources to re-start.

For example — Process pl have resource rl and requesting for r2 that is
hold by process p2. then process pl preempt rl and after some time it try
to restart by requesting both r1 and r2 resources.

Problem — This can cause the Live Lock Problem .

Live Lock : Live lock is the situation where two or more processes
continuously changing their state in response to each other without
making any real progress.

Example:

« suppose there are two processes pl and p2 and two resources rl and
r2.

« Now, pl acquired rl and need r2 & p2 acquired r2 and need r1.

« SO0 according to above method- Both pl and p2 detect that they can’t
acquire second resource, so they release resource that they are
holding and then try again.

« continuous cycle- p1 again acquired rl and requesting to r2 p2 again
acquired r2 and requesting to rl so there is no overall progress still
process are changing there state as they preempt resources and then
again holding them. This the situation of Live Lock.

(iv) Circular Wait:

To remove the circular wait in system we can give the ordering of
resources in which a process needs to acquire.

Ex: If there are process pl and p2 and resources rl and r2 then we can
fix the resource acquiring order like the process first need to acquire
resource rl and then resource r2. so the process that acquired r1 will be
allowed to acquire r2 , other process needs to wait until rl is free.

This is the Deadlock prevention methods but practically only fourth

method is used as all other three condition removal method have some

disadvantages with them.

Deadlock Avoidance

Avoidance is kind of futuristic. By using the strategy of “Avoidance”, we

have to make an assumption. We need to ensure that all information

about resources that the process will need is known to us before the
execution of the process. We use Banker’s algorithm to avoid deadlock.

In prevention and avoidance, we get the correctness of data but

performance decreases.

Deadlock Detection and Recovery

If Deadlock prevention or avoidance is not applied to the software then we

can handle this by deadlock detection and recovery. which consist of two

phases:

1. In the first phase, we examine the state of the process and check
whether there is a deadlock or not in the system.

2. If found deadlock in the first phase then we apply the algorithm for
recovery of the deadlock.

In Deadlock detection and recovery, we get the correctness of data but

performance decreases.

Deadlock Detection

Deadlock detection is a process in computing where the system checks if

there are any sets of processes that are stuck waiting for each other

https://www.geeksforgeeks.org/deadlock-prevention/

indefinitely, preventing them from moving forward. In simple words,
deadlock detection is the process of finding out whether any process are
stuck in loop or not. There are several algorithms like;
« Resource Allocation Graph
« Banker’s Algorithm
These algorithms helps in detection of deadlock in Operating System.
Deadlock Recovery
There are several Deadlock Recovery Techniques:
« Manual Intervention
« Automatic Recovery
« Process Termination
« Resource Preemption
1. Manual Intervention
When a deadlock is detected, one option is to inform the operator and let
them handle the situation manually. While this approach allows for human
judgment and decision-making, it can be time-consuming and may not be
feasible in large-scale systems.
2. Automatic Recovery
An alternative approach is to enable the system to recover from deadlock
automatically. This method involves breaking the deadlock cycle by either
aborting processes or preempting resources. Let's delve into these
strategies in more detail.
3. Process Termination
e Abort all Deadlocked Processes
This approach breaks the deadlock cycle, but it comes at a significant
cost. The processes that were aborted may have executed for a
considerable amount of time, resulting in the loss of partial

computations. These computations may need to be recomputed later.
e« Abort one process at atime

Instead of aborting all deadlocked processes simultaneously, this
strategy involves selectively aborting one process at a time until the
deadlock cycle is eliminated. However, this incurs overhead as a
deadlock-detection algorithm must be invoked after each process

termination to determine if any processes are still deadlocked.
e Factors for choosing the termination order:

The process’s priority
Completion time and the progress made so far
Resources consumed by the process
Resources required to complete the process
Number of processes to be terminated
Process type (interactive or batch)
4. Resource Preemption
« Selecting a Victim
Resource preemption involves choosing which resources and

https://www.geeksforgeeks.org/resource-allocation-graph-rag-in-operating-system/
https://www.geeksforgeeks.org/resource-allocation-graph-rag-in-operating-system/

processes should be preempted to break the deadlock. The selection
order aims to minimize the overall cost of recovery. Factors considered
for victim selection may include the number of resources held by a
deadlocked process and the amount of time the process has
consumed.

e Rollback
If a resource is preempted from a process, the process cannot continue
its normal execution as it lacks the required resource. Rolling back the
process to a safe state and restarting it is a common approach.
Determining a safe state can be challenging, leading to the use of total
rollback, where the process is aborted and restarted from scratch.

e Starvation Prevention
To prevent resource starvation, it is essential to ensure that the same
process is not always chosen as a victim. If victim selection is solely
based on cost factors, one process might repeatedly lose its resources
and never complete its designated task. To address this, it is advisable
to limit the number of times a process can be chosen as a victim,
including the number of rollbacks in the cost factor.

Deadlock Ignorance

If a deadlock is very rare, then let it happen and reboot the system. This is
the approach that both Windows and UNIX take. we use the ostrich
algorithm for deadlock ignorance.

“In Deadlock, ignorance performance is better than the above two
methods but the correctness of data is not there.”

Safe State

A safe state can be defined as a state in which there is no deadlock. It is

achievable if:

« If a process needs an unavailable resource, it may wait until the same
has been released by a process to which it has already been allocated.
if such a sequence does not exist, it is an unsafe state.

« All the requested resources are allocated to the process.

Difference between Starvation and Deadlocks

Aspect Deadlock Starvation

A condition where two or A condition where a process

Definition more processes are blocked is perpetually denied
forever, each waiting for a necessary resources, despite
resource held by another. resources being available.

Resources are held by Resources are available but

Resource . .)

S processes involved in the are continuously allocated to

Availability

deadlock. other processes.

Aspect Deadlock Starvation

Circular dependency between Continuous preference or
processes, where each priority given to other

Cause ; o .
process is waiting for a processes, causing a process
resource from another. to wait indefinitely.
Requires intervention, such Can be mitigated by adjusting
: as aborting processes or : -
Resolution scheduling policies to ensure

preempting resources to

fair resource allocation.
break the cycle.

What is Deadlock?

Deadlock is a situation in computing where two or more processes are
unable to proceed because each is waiting for the other to release
resources. Key concepts include mutual exclusion, resource holding,
circular wait, and no preemption. Consider a practical example when two
trains are coming toward each other on the same track and there is only
one track, none of the trains can move once they are in front of each
other.

Deadlock is an infinite Process it means that once a process goes
into deadlock it will never come out of the loop and the process will enter
for an indefinite amount of time. There are only detection, resolution, and
prevention techniques. But, there are no Deadlock-stopping techniques.

https://www.geeksforgeeks.org/introduction-of-deadlock-in-operating-system/

Resource 1

Assigned to Waiting for

Waiting for Assigned to

Resource 2 1

Figure: Deadlock in Operating system

Deadlock

How a Deadlock Can Occur?

Consider a simple scenario that includes two processes (Process A and
Process B) and two resources (Resource 1 and Resource 2). Let’s see
that both processes begin execution at the same time.

« Process 1 obtains Resource 1.

« Process 2 obtains Resource 2.

We are currently in the following situation:

« Process 1 possesses Resource 1.

« Process 2 possesses Resource 2.

Let us now see what happens next: Process 1 requires Resource 2 to
continue execution but is unable to do so because Process 2 is currently
holding Resource 2. Similarly, Process 2 requires Resource 1 to continue
execution but is unable to do so because Process 1 is currently holding
Resource 1. Both processes are now stuck in a loop:

« Process 1 is awaiting Resource 2 from Process 2.

o Process 2 is awaiting Resource 1 from Process 1.

We have a deadlock because neither process can release the resource it
is holding until it completes its task, and neither can proceed without the
resource the other process is holding. Both processes are effectively

https://www.geeksforgeeks.org/introduction-of-deadlock-in-operating-system/

“‘deadlocked,” unable to move forward. To break the deadlock and free up
resources for other processes in this situation, an external intervention,
such as the operating system killing one or both processes, would be
required. Deadlocks are undesirable in operating systems because they
waste resources and have a negative impact on overall system
performance and responsiveness. To prevent deadlocks, various resource
allocation and process scheduling algorithms, such as deadlock detection
and avoidance, are employed.

Necessary Conditions for the Occurrence of a
Deadlock

Let’s explain all four conditions related to deadlock in the context of the
scenario with two processes and two resources:
o Mutual Exclusion
« Hold and Wait
« No Pre Emption
Circular Wait

1. Mutual Exclusion

Mutual Exclusion condition requires that at least one resource be held in a
non-shareable mode, which means that only one process can use the
resource at any given time. Both Resource 1 and Resource 2 are non-
shareable in our scenario, and only one process can have exclusive
access to each resource at any given time. As an example:

« Process 1 obtains Resource 1.

« Process 2 acquires Resource 2.

2. Hold and Wait

The hold and wait condition specifies that a process must be holding at

least one resource while waiting for other processes to release resources

that are currently held by other processes. In our example,

« Process 1 has Resource 1 and is awaiting Resource 2.

« Process 2 currently has Resource 2 and is awaiting Resource 1.

« Both processes hold one resource while waiting for the other, satisfying
the hold and wait condition.

3. No Preemption

Preemption is the act of taking a resource from a process before it has
finished its task. According to the no preemption condition, resources
cannot be taken forcibly from a process a process can only release
resources voluntarily after completing its task.

For example — Process pl have resource rl and requesting for r2 that is
hold by process p2. then process pl can not preempt resource r2 until
process p2 can finish his execution. After some time it try to restart by
requesting both rl and r2 resources.

Problem — This can cause the Live Lock Problem .

What is Live Lock?

https://www.geeksforgeeks.org/cpu-scheduling-in-operating-systems/
https://www.geeksforgeeks.org/mutual-exclusion-in-synchronization/
https://www.geeksforgeeks.org/deadlock-prevention/
https://www.geeksforgeeks.org/automatic-resource-management-java/

Live lock is the situation where two or more processes continuously
changing their state in response to each other without making any real
progress. Example:

« Suppose there are two processes 1 and 2 and two resources r1 and r2.

« Now, pl acquired rl and need r2 & p2 acquired r2 and need rl.

« SO according to above method- Both p1 and p2 detect that they can’t
acquire second resource, so they release resource that they are
holding and then try again.

« continuous cycle- pl1 again acquired rl and requesting to r2 p2 again
acquired r2 and requesting to r1 so there is no overall progress still
process are changing there state as they preempt resources and then
again holding them. This the situation of Live Lock.

4. Circular Wait

Circular wait is a condition in which a set of processes are waiting for
resources in such a way that there is a circular chain, with each process in
the chain holding a resource that the next process needs. This is one of
the necessary conditions for a deadlock to occur in a system.

Example: Imagine four processes—P1, P2, P3, and P4—and four
resources—R1, R2, R3, and R4.

« P1lis holding R1 and waiting for R2 (which is held by P2).

« P2 is holding R2 and waiting for R3 (which is held by P3).

« P3is holding R3 and waiting for R4 (which is held by P4).

« P4 is holding R4 and waiting for R1 (which is held by P1).

Circular wait example

This forms a circular chain where every process is waiting for a resource
held by another, creating a situation where no process can proceed,
leading to a deadlock.

Conclusion

Deadlocks are major problems in computers in which two or more
processes remain blocked forever, each waiting for the other to release
resources. A deadlock requires four conditions: mutual exclusion, hold
and wait, no preemption, and circular wait. Deadlocks consume resources
and reduce system performance, hence their avoidance, detection, and
resolution are critical in operating systems. Deadlocks are managed and
mitigated using a variety of algorithms and tactics, which ensure system
stability and efficiency.

Deadlock prevention and avoidance are strategies used in computer
systems to ensure that different processes can run smoothly without
getting stuck waiting for each other forever. Think of it like a traffic system
where cars (processes) must move through intersections (resources)
without getting into a gridlock.

Necessary Conditions for Deadlock

o Mutual Exclusion

. Hold and Wait

« No Preemption

« Circular Wait

Please refer Conditions for Deadlock in OS for details.

Deadlock Prevention

We can prevent a Deadlock by eliminating any of the above four
conditions.

Eliminate Mutual Exclusion

It is not possible to violate mutual exclusion because some resources,
such as the tape drive, are inherently non-shareable. For other resources,
like printers, we can use a technique called Spooling (Simultaneous
Peripheral Operations Online).

In spooling, when multiple processes request the printer, their jobs
(instructions of the processes that require printer access) are added to the
gueue in the spooler directory. The printer is allocated to jobs on a First-
Come, First-Served (FCFS) basis. In this way, a process does not have to
wait for the printer and can continue its work after adding its job to the
queue.

Eliminate Hold and Wait

Hold and wait is a condition in which a process holds one resource while
simultaneously waiting for another resource that is being held by a
different process. The process cannot continue until it gets all the required
resources.

https://www.geeksforgeeks.org/conditions-for-deadlock-in-operating-system/
https://www.geeksforgeeks.org/mutual-exclusion-in-synchronization/
https://www.geeksforgeeks.org/spooling-in-operating-system/

Hold & Wait

There are two ways to eliminate hold and wait:

« By eliminating wait: The process specifies the resources it requires in
advance so that it does not have to wait for allocation
after execution starts.

For Example, Process1 declares in advance that it requires both
Resourcel and Resource?2.

« By eliminating hold: The process has to release all resources it is
currently holding before making a new request.

For Example: Process1 must release Resource2 and Resource3
before requesting Resourcel.

Eliminate No Preemption

Preemption is temporarily interrupting an executing task and later

resuming it. Two ways to eliminate No Preemption:

« Processes must release resources voluntarily: A process should
only give up resources it holds when it completes its task or no longer
needs them.

« Avoid partial allocation: Allocate all required resources to a process
at once before it begins execution. If not all resources are available,
the process must wait.

Eliminate Circular Wait

To eliminate circular wait for deadlock prevention, we can use order on

resource allocation.

« Assign a unique number to each resource.

« Processes can only request resources in an increasing order of their
numbers.

This prevents circular chains of processes waiting for resources, as no

process can request a resource lower than what it already holds.

Detection and Recovery

Another approach to dealing with deadlocks is to detect and recover from

them when they occur. This can involve kiling one or more of the

processes involved in the deadlock or releasing some of the resources

they hold.

Deadlock Avoidance

Deadlock avoidance ensures that a resource request is only granted if it

won’t lead to deadlock, either immediately or in the future. Since

the kernel can’t predict future process behavior, it uses a conservative

approach. Each process declares the maximum number of resources it

may need. The kernel allows requests in stages, checking for potential

deadlocks before granting them. A request is granted only if no deadlock

IS possible; otherwise, it stays pending. This approach is conservative, as

a process may finish without using the maximum resources it declared.

Banker’s Algorithm is the technique used for Deadlock Avoidance.

Banker’s Algorithm

Bankers’ Algorithm is aresource allocation and deadlock avoidance

algorithm that tests all resource requests made by processes. It checks

for the safe state, and if granting a request keeps the system in safe

state, the request is allowed. However, if no safe state exists, the request

Is denied.

Inputs to Banker’s Algorithm

« Max needs of resources by each process.

« Currently, allocated resources by each process.

« Max free available resources in the system.

The request will only be granted under the below condition

« If the request made by the process is less than equal to the max
needed for that process.

. If the request made by the process is less than equal to the freely
available resource in the system.

Timeouts

To avoid deadlocks caused by indefinite waiting, a timeout mechanism

can be used to limit the amount of time a process can wait for a resource.

If the help is unavailable within the timeout period, the process can be

forced to release its current resources and try again later.

Example
Below is an example of a Banker’s algorithm
Total resources in system:

https://www.geeksforgeeks.org/deadlock-detection-recovery
https://www.geeksforgeeks.org/kernel-in-operating-system/
https://www.geeksforgeeks.org/operating-system-bankers-algorithm

A B C D

6 5 7 6

Available system resources are:
A B C D

3 1 1 2

Processes (currently allocated resources):
A B C D

Maximum resources we have for a process:
A B C D

P3 1 3 5 O

Need = Maximum Resources Requirement — Currently Allocated
Resources

A B C D

P12 1 0 1
P, 0 2 0 1

P3 0 1 4 O

