
A deadlock is a situation where a set of processes is blocked because
each process is holding a resource and waiting for another resource
acquired by some other process. In this article, we will discuss deadlock,
its necessary conditions, etc. in detail.
 Deadlock is a situation in computing where two or more processes are

unable to proceed because each is waiting for the other to release
resources.

 Key concepts include mutual exclusion, resource holding, circular wait,
and no preemption.

Consider an example when two trains are coming toward each other on
the same track and there is only one track, none of the trains can move
once they are in front of each other. This is a practical example of
deadlock.

How Does Deadlock occur in the Operating
System?
Before going into detail about how deadlock occurs in the Operating
System, let’s first discuss how the Operating System uses the resources
present. A process in an operating system uses resources in the following
way.
 Requests a resource
 Use the resource
 Releases the resource
A situation occurs in operating systems when there are two or more
processes that hold some resources and wait for resources held by
other(s). For example, in the below diagram, Process 1 is holding
Resource 1 and waiting for resource 2 which is acquired by process 2,
and process 2 is waiting for resource 1.

Examples of Deadlock
There are several examples of deadlock. Some of them are mentioned
below.

1. The system has 2 tape drives. P0 and P1 each hold one tape drive and
each needs another one.
2. Semaphores A and B, initialized to 1, P0, and P1 are in deadlock as
follows:
 P0 executes wait(A) and preempts.
 P1 executes wait(B).
 Now P0 and P1 enter in deadlock.

 P0 P1

 wait(A); wait(B)

 wait(B); wait(A)

3. Assume the space is available for allocation of 200K bytes, and the
following sequence of events occurs.

 P0 P1

 Request
80KB;

 Request
70KB;

 Request 60KB; Request 80KB;

Deadlock occurs if both processes progress to their second request.

Necessary Conditions for Deadlock in OS
Deadlock can arise if the following four conditions hold simultaneously
(Necessary Conditions)
 Mutual Exclusion: Only one process can use a resource at any given

time i.e. the resources are non-sharable.
 Hold and Wait: A process is holding at least one resource at a time and

is waiting to acquire other resources held by some other process.
 No Preemption: A resource cannot be taken from a process unless the

process releases the resource.
 Circular Wait: set of processes are waiting for each other in a circular

fashion. For example, lets say there are a set of processes {P0P0
,P1P1,P2P2,P3P3} such that P0P0 depends on P1P1, P1P1 depends
on P2P2, P2P2 depends on P3P3 and P3P3 depends on P0P0. This
creates a circular relation between all these processes and they have
to wait forever to be executed.

Methods of Handling Deadlocks in Operating
System
There are three ways to handle deadlock:
1. Deadlock Prevention or Avoidance

2. Deadlock Detection and Recovery
3. Deadlock Ignorance

Deadlock Prevention or Avoidance
Deadlock Prevention and Avoidance is the one of the methods for
handling deadlock. First, we will discuss Deadlock Prevention, then
Deadlock Avoidance.

Deadlock Prevention
In deadlock prevention the aim is to not let full-fill one of the required
condition of the deadlock. This can be done by this method:
(i) Mutual Exclusion

We only use the Lock for the non-share-able resources and if the
resource is share- able (like read only file) then we not use the locks here.
That ensure that in case of share -able resource , multiple process can
access it at same time. Problem- Here the problem is that we can only do
it in case of share-able resources but in case of no-share-able resources
like printer , we have to use Mutual exclusion.
(ii) Hold and Wait

To ensure that Hold and wait never occurs in the system, we must
guarantee that whenever process request for resource , it does not hold
any other resources.
 we can provide the all resources to the process that is required for it’s

execution before starting it’s execution . problem – for example if there
are three resource that is required by a process and we have given all
that resource before starting execution of process then there might be
a situation that initially we required only two resource and after one
hour we want third resources and this will cause starvation for the
another process that wants this resources and in that waiting time that
resource can allocated to other process and complete their execution.

 We can ensure that when a process request for any resources that
time the process does not hold any other resources. Ex- Let there are
three resources DVD, File and Printer . First the process request for
DVD and File for the copying data into the file and let suppose it is
going to take 1 hour and after it the process free all resources then
again request for File and Printer to print that file.

(iii) No Preemption
If a process is holding some resource and requestion other resources

that are acquired and these resource are not available immediately then
the resources that current process is holding are preempted. After some
time process again request for the old resources and other required
resources to re-start.

For example – Process p1 have resource r1 and requesting for r2 that is
hold by process p2. then process p1 preempt r1 and after some time it try
to restart by requesting both r1 and r2 resources.

Problem – This can cause the Live Lock Problem .

Live Lock : Live lock is the situation where two or more processes
continuously changing their state in response to each other without
making any real progress.

Example:
 suppose there are two processes p1 and p2 and two resources r1 and

r2.
 Now, p1 acquired r1 and need r2 & p2 acquired r2 and need r1.
 so according to above method- Both p1 and p2 detect that they can’t

acquire second resource, so they release resource that they are
holding and then try again.

 continuous cycle- p1 again acquired r1 and requesting to r2 p2 again
acquired r2 and requesting to r1 so there is no overall progress still
process are changing there state as they preempt resources and then
again holding them. This the situation of Live Lock.

(iv) Circular Wait:
To remove the circular wait in system we can give the ordering of

resources in which a process needs to acquire.
Ex: If there are process p1 and p2 and resources r1 and r2 then we can

fix the resource acquiring order like the process first need to acquire
resource r1 and then resource r2. so the process that acquired r1 will be
allowed to acquire r2 , other process needs to wait until r1 is free.
This is the Deadlock prevention methods but practically only fourth
method is used as all other three condition removal method have some
disadvantages with them.

Deadlock Avoidance
Avoidance is kind of futuristic. By using the strategy of ―Avoidance‖, we
have to make an assumption. We need to ensure that all information
about resources that the process will need is known to us before the
execution of the process. We use Banker’s algorithm to avoid deadlock.
In prevention and avoidance, we get the correctness of data but
performance decreases.

Deadlock Detection and Recovery
If Deadlock prevention or avoidance is not applied to the software then we
can handle this by deadlock detection and recovery. which consist of two
phases:
1. In the first phase, we examine the state of the process and check

whether there is a deadlock or not in the system.
2. If found deadlock in the first phase then we apply the algorithm for

recovery of the deadlock.
In Deadlock detection and recovery, we get the correctness of data but
performance decreases.

Deadlock Detection
Deadlock detection is a process in computing where the system checks if
there are any sets of processes that are stuck waiting for each other

https://www.geeksforgeeks.org/deadlock-prevention/

indefinitely, preventing them from moving forward. In simple words,
deadlock detection is the process of finding out whether any process are
stuck in loop or not. There are several algorithms like;
 Resource Allocation Graph
 Banker’s Algorithm
These algorithms helps in detection of deadlock in Operating System.

Deadlock Recovery
There are several Deadlock Recovery Techniques:
 Manual Intervention
 Automatic Recovery
 Process Termination
 Resource Preemption

1. Manual Intervention
When a deadlock is detected, one option is to inform the operator and let
them handle the situation manually. While this approach allows for human
judgment and decision-making, it can be time-consuming and may not be
feasible in large-scale systems.

2. Automatic Recovery
An alternative approach is to enable the system to recover from deadlock
automatically. This method involves breaking the deadlock cycle by either
aborting processes or preempting resources. Let’s delve into these
strategies in more detail.

3. Process Termination
 Abort all Deadlocked Processes

This approach breaks the deadlock cycle, but it comes at a significant
cost. The processes that were aborted may have executed for a
considerable amount of time, resulting in the loss of partial
computations. These computations may need to be recomputed later.

 Abort one process at a time
Instead of aborting all deadlocked processes simultaneously, this
strategy involves selectively aborting one process at a time until the
deadlock cycle is eliminated. However, this incurs overhead as a
deadlock-detection algorithm must be invoked after each process
termination to determine if any processes are still deadlocked.

 Factors for choosing the termination order:
The process’s priority
Completion time and the progress made so far
Resources consumed by the process
Resources required to complete the process
Number of processes to be terminated
Process type (interactive or batch)

4. Resource Preemption
 Selecting a Victim

Resource preemption involves choosing which resources and

https://www.geeksforgeeks.org/resource-allocation-graph-rag-in-operating-system/
https://www.geeksforgeeks.org/resource-allocation-graph-rag-in-operating-system/

processes should be preempted to break the deadlock. The selection
order aims to minimize the overall cost of recovery. Factors considered
for victim selection may include the number of resources held by a
deadlocked process and the amount of time the process has
consumed.

 Rollback
If a resource is preempted from a process, the process cannot continue
its normal execution as it lacks the required resource. Rolling back the
process to a safe state and restarting it is a common approach.
Determining a safe state can be challenging, leading to the use of total
rollback, where the process is aborted and restarted from scratch.

 Starvation Prevention
To prevent resource starvation, it is essential to ensure that the same
process is not always chosen as a victim. If victim selection is solely
based on cost factors, one process might repeatedly lose its resources
and never complete its designated task. To address this, it is advisable
to limit the number of times a process can be chosen as a victim,
including the number of rollbacks in the cost factor.

Deadlock Ignorance
If a deadlock is very rare, then let it happen and reboot the system. This is
the approach that both Windows and UNIX take. we use the ostrich
algorithm for deadlock ignorance.
“In Deadlock, ignorance performance is better than the above two
methods but the correctness of data is not there.”

Safe State
A safe state can be defined as a state in which there is no deadlock. It is
achievable if:
 If a process needs an unavailable resource, it may wait until the same

has been released by a process to which it has already been allocated.
if such a sequence does not exist, it is an unsafe state.

 All the requested resources are allocated to the process.

Difference between Starvation and Deadlocks

Aspect Deadlock Starvation

Definition

A condition where two or
more processes are blocked
forever, each waiting for a
resource held by another.

A condition where a process
is perpetually denied
necessary resources, despite
resources being available.

Resource
Availability

Resources are held by
processes involved in the

deadlock.

Resources are available but
are continuously allocated to
other processes.

Aspect Deadlock Starvation

Cause

Circular dependency between
processes, where each
process is waiting for a
resource from another.

Continuous preference or
priority given to other
processes, causing a process
to wait indefinitely.

Resolution

Requires intervention, such
as aborting processes or
preempting resources to
break the cycle.

Can be mitigated by adjusting
scheduling policies to ensure
fair resource allocation.

What is Deadlock?
Deadlock is a situation in computing where two or more processes are
unable to proceed because each is waiting for the other to release
resources. Key concepts include mutual exclusion, resource holding,
circular wait, and no preemption. Consider a practical example when two
trains are coming toward each other on the same track and there is only
one track, none of the trains can move once they are in front of each
other.
Deadlock is an infinite Process it means that once a process goes
into deadlock it will never come out of the loop and the process will enter
for an indefinite amount of time. There are only detection, resolution, and
prevention techniques. But, there are no Deadlock-stopping techniques.

https://www.geeksforgeeks.org/introduction-of-deadlock-in-operating-system/

Deadlock

How a Deadlock Can Occur?
Consider a simple scenario that includes two processes (Process A and
Process B) and two resources (Resource 1 and Resource 2). Let’s see
that both processes begin execution at the same time.
 Process 1 obtains Resource 1.
 Process 2 obtains Resource 2.
We are currently in the following situation:
 Process 1 possesses Resource 1.
 Process 2 possesses Resource 2.
Let us now see what happens next: Process 1 requires Resource 2 to
continue execution but is unable to do so because Process 2 is currently
holding Resource 2. Similarly, Process 2 requires Resource 1 to continue
execution but is unable to do so because Process 1 is currently holding
Resource 1. Both processes are now stuck in a loop:
 Process 1 is awaiting Resource 2 from Process 2.
 Process 2 is awaiting Resource 1 from Process 1.
We have a deadlock because neither process can release the resource it
is holding until it completes its task, and neither can proceed without the
resource the other process is holding. Both processes are effectively

https://www.geeksforgeeks.org/introduction-of-deadlock-in-operating-system/

―deadlocked,‖ unable to move forward. To break the deadlock and free up
resources for other processes in this situation, an external intervention,
such as the operating system killing one or both processes, would be
required. Deadlocks are undesirable in operating systems because they
waste resources and have a negative impact on overall system
performance and responsiveness. To prevent deadlocks, various resource
allocation and process scheduling algorithms, such as deadlock detection
and avoidance, are employed.

Necessary Conditions for the Occurrence of a
Deadlock
Let’s explain all four conditions related to deadlock in the context of the
scenario with two processes and two resources:
 Mutual Exclusion
 Hold and Wait
 No Pre Emption
 Circular Wait

1. Mutual Exclusion
Mutual Exclusion condition requires that at least one resource be held in a
non-shareable mode, which means that only one process can use the
resource at any given time. Both Resource 1 and Resource 2 are non-
shareable in our scenario, and only one process can have exclusive
access to each resource at any given time. As an example:
 Process 1 obtains Resource 1.
 Process 2 acquires Resource 2.

2. Hold and Wait
The hold and wait condition specifies that a process must be holding at
least one resource while waiting for other processes to release resources
that are currently held by other processes. In our example,
 Process 1 has Resource 1 and is awaiting Resource 2.
 Process 2 currently has Resource 2 and is awaiting Resource 1.
 Both processes hold one resource while waiting for the other, satisfying

the hold and wait condition.

3. No Preemption
Preemption is the act of taking a resource from a process before it has
finished its task. According to the no preemption condition, resources
cannot be taken forcibly from a process a process can only release
resources voluntarily after completing its task.
For example – Process p1 have resource r1 and requesting for r2 that is
hold by process p2. then process p1 can not preempt resource r2 until
process p2 can finish his execution. After some time it try to restart by
requesting both r1 and r2 resources.
Problem – This can cause the Live Lock Problem .

What is Live Lock?

https://www.geeksforgeeks.org/cpu-scheduling-in-operating-systems/
https://www.geeksforgeeks.org/mutual-exclusion-in-synchronization/
https://www.geeksforgeeks.org/deadlock-prevention/
https://www.geeksforgeeks.org/automatic-resource-management-java/

Live lock is the situation where two or more processes continuously
changing their state in response to each other without making any real
progress. Example:
 Suppose there are two processes 1 and 2 and two resources r1 and r2.
 Now, p1 acquired r1 and need r2 & p2 acquired r2 and need r1.
 so according to above method- Both p1 and p2 detect that they can’t

acquire second resource, so they release resource that they are
holding and then try again.

 continuous cycle- p1 again acquired r1 and requesting to r2 p2 again
acquired r2 and requesting to r1 so there is no overall progress still
process are changing there state as they preempt resources and then
again holding them. This the situation of Live Lock.

4. Circular Wait
Circular wait is a condition in which a set of processes are waiting for
resources in such a way that there is a circular chain, with each process in
the chain holding a resource that the next process needs. This is one of
the necessary conditions for a deadlock to occur in a system.
Example: Imagine four processes—P1, P2, P3, and P4—and four
resources—R1, R2, R3, and R4.
 P1 is holding R1 and waiting for R2 (which is held by P2).
 P2 is holding R2 and waiting for R3 (which is held by P3).
 P3 is holding R3 and waiting for R4 (which is held by P4).
 P4 is holding R4 and waiting for R1 (which is held by P1).

Circular wait example

This forms a circular chain where every process is waiting for a resource
held by another, creating a situation where no process can proceed,
leading to a deadlock.

Conclusion
Deadlocks are major problems in computers in which two or more
processes remain blocked forever, each waiting for the other to release
resources. A deadlock requires four conditions: mutual exclusion, hold
and wait, no preemption, and circular wait. Deadlocks consume resources
and reduce system performance, hence their avoidance, detection, and
resolution are critical in operating systems. Deadlocks are managed and
mitigated using a variety of algorithms and tactics, which ensure system
stability and efficiency.

Deadlock prevention and avoidance are strategies used in computer
systems to ensure that different processes can run smoothly without
getting stuck waiting for each other forever. Think of it like a traffic system
where cars (processes) must move through intersections (resources)
without getting into a gridlock.

Necessary Conditions for Deadlock
 Mutual Exclusion
 Hold and Wait
 No Preemption
 Circular Wait
Please refer Conditions for Deadlock in OS for details.

Deadlock Prevention
We can prevent a Deadlock by eliminating any of the above four
conditions.

Eliminate Mutual Exclusion
It is not possible to violate mutual exclusion because some resources,
such as the tape drive, are inherently non-shareable. For other resources,
like printers, we can use a technique called Spooling (Simultaneous
Peripheral Operations Online).
In spooling, when multiple processes request the printer, their jobs
(instructions of the processes that require printer access) are added to the
queue in the spooler directory. The printer is allocated to jobs on a First-
Come, First-Served (FCFS) basis. In this way, a process does not have to
wait for the printer and can continue its work after adding its job to the
queue.

Eliminate Hold and Wait
Hold and wait is a condition in which a process holds one resource while
simultaneously waiting for another resource that is being held by a
different process. The process cannot continue until it gets all the required
resources.

https://www.geeksforgeeks.org/conditions-for-deadlock-in-operating-system/
https://www.geeksforgeeks.org/mutual-exclusion-in-synchronization/
https://www.geeksforgeeks.org/spooling-in-operating-system/

Hold & Wait

There are two ways to eliminate hold and wait:
 By eliminating wait: The process specifies the resources it requires in

advance so that it does not have to wait for allocation
after execution starts.
For Example, Process1 declares in advance that it requires both
Resource1 and Resource2.

 By eliminating hold: The process has to release all resources it is
currently holding before making a new request.
For Example: Process1 must release Resource2 and Resource3
before requesting Resource1.

Eliminate No Preemption
Preemption is temporarily interrupting an executing task and later
resuming it. Two ways to eliminate No Preemption:
 Processes must release resources voluntarily: A process should

only give up resources it holds when it completes its task or no longer
needs them.

 Avoid partial allocation: Allocate all required resources to a process
at once before it begins execution. If not all resources are available,
the process must wait.

Eliminate Circular Wait
To eliminate circular wait for deadlock prevention, we can use order on
resource allocation.
 Assign a unique number to each resource.

 Processes can only request resources in an increasing order of their
numbers.

This prevents circular chains of processes waiting for resources, as no
process can request a resource lower than what it already holds.

Detection and Recovery
Another approach to dealing with deadlocks is to detect and recover from
them when they occur. This can involve killing one or more of the
processes involved in the deadlock or releasing some of the resources
they hold.

Deadlock Avoidance
Deadlock avoidance ensures that a resource request is only granted if it
won’t lead to deadlock, either immediately or in the future. Since
the kernel can’t predict future process behavior, it uses a conservative
approach. Each process declares the maximum number of resources it
may need. The kernel allows requests in stages, checking for potential
deadlocks before granting them. A request is granted only if no deadlock
is possible; otherwise, it stays pending. This approach is conservative, as
a process may finish without using the maximum resources it declared.
Banker’s Algorithm is the technique used for Deadlock Avoidance.

Banker’s Algorithm
Bankers’ Algorithm is a resource allocation and deadlock avoidance
algorithm that tests all resource requests made by processes. It checks
for the safe state, and if granting a request keeps the system in safe
state, the request is allowed. However, if no safe state exists, the request
is denied.
Inputs to Banker’s Algorithm
 Max needs of resources by each process.
 Currently, allocated resources by each process.
 Max free available resources in the system.
The request will only be granted under the below condition
 If the request made by the process is less than equal to the max

needed for that process.
 If the request made by the process is less than equal to the freely

available resource in the system.

Timeouts
To avoid deadlocks caused by indefinite waiting, a timeout mechanism
can be used to limit the amount of time a process can wait for a resource.
If the help is unavailable within the timeout period, the process can be
forced to release its current resources and try again later.

Example
Below is an example of a Banker’s algorithm
Total resources in system:

https://www.geeksforgeeks.org/deadlock-detection-recovery
https://www.geeksforgeeks.org/kernel-in-operating-system/
https://www.geeksforgeeks.org/operating-system-bankers-algorithm

A B C D

6 5 7 6

Available system resources are:

A B C D

3 1 1 2

Processes (currently allocated resources):

A B C D

P1 1 2 2 1

P2 1 0 3 3

P3 1 2 1 0

Maximum resources we have for a process:

A B C D

P1 3 3 2 2

P2 1 2 3 4

P3 1 3 5 0

Need = Maximum Resources Requirement – Currently Allocated
Resources

A B C D

P1 2 1 0 1

P2 0 2 0 1

P3 0 1 4 0

